Три координаты

Содержание

Этюд о координатах

Три координаты
Изображение с сайта omartasatt.ru

Человеку всегда было важно понять свое место в окружающем мире. Причем не только в пространстве, но и во времени, и в социуме.

Оставим в стороне время и социум, это тема отдельного большого разговора. Сосредоточимся на пространстве.

Как определить свое местоположение, местоположение других людей и окружающих предметов? И, что даже более важно, как сообщить это местоположение другим?

Что определить абсолютное местоположение невозможно люди поняли очень давно. Можно только относительно чего либо, какого либо ориентира. Пример такого относительного позиционирования можно найти у Конан Дойля в “Обряд дома Месгрейвов”. Помните?

“Сколько надо сделать шагов?”
“На север – десять и десять, на восток – пять и пять, на юг – два и
два, на запад – один и один и потом вниз”.

В современной терминологии, ориентир и набор условий, которые определяют его использование, называют системой координат. А сами координаты определяют положение объекта в этой системе.

Развитие мореплавания, астрономии, геометрии, других наук, потребовало более точного и единообразного способа задания координат объектов. Давайте повнимательнее посмотрим на некоторые системы координат, их применение, изменение, и взаимосвязь между ними. В этой статье, как всегда, будет математика, но почти не будет физики.

Одномерная система координат

Давайте вспомним статью “Сага о треугольниках”. Там я немного касался темы систем координат, когда говорил о прямой и плоскости. Начнем с простейшего случая – координатного луча.

Точку, относительно которой указывается положение, или координата, других точек называют началом координат. Обычно ее обозначают “0”. Расстояние от начала координат до точки А (в нашем примере) называют координатой. В данном случае координата может быть только положительной, что кажется лишним, и искусственным ограничением. Это можно изменить

Название “координатная прямая” не совсем верное. Прямая не имеет направления. Луч имеет направление, но при этом имеет начало (как в первом случае). Тем не менее, буду использовать именно термин координатная прямая.

Но для любителей точности могу сказать, что так как точка делит прямую на два луча, то направление одного из них можно принять за положительное, а другого за отрицательное. Направление положительного луча обозначим стрелкой, а направление отрицательного ничем не будет обозначаться.

Точка, разделившая прямую на два координатных луча, относительно которой указывают местоположение (координаты) других точек, точно так же называется началом координат.

В этом примере “координату точки А” можно просто обозначить как “А”, и она положительна. Координата точки Б отрицательна и обозначается как “-Б”. Расстояние между двумя точками определяется как разность их координат. Исходя из этого получим, для нашего примера, расстояние АБ=А-(-Б)=А+Б.

Несмотря на простоту эта система координат применяется достаточно широко. Посмотрите на обычную линейку. Посмотрите на градусник. И это лишь простейшие примеры того, где она применяется.

Двумерная прямоугольная система координат. Декартова система координат

Теперь возьмем две пересекающиеся под прямым углом координатные прямые на плоскости. Мы получим самую широко используемую систему координат Декартову прямоугольную систему координат. Ее знают все еще со школьной скамьи. Ее я тоже упоминал, кратко, в статье “Сага о треугольниках”. Давайте посмотрим на нее внимательнее.

Пока все просто, совсем как в школьных учебниках. Теперь координаты точки на плоскости задаются парой чисел. Точка А имеет координаты (Xа,Ya), а точка Б (Хб,-Yб). Координата Х называется абсциссой, а Y ординатой. Расстояние между точками А и Б, или длина отрезка АБ, теперь определяется гораздо сложнее

Откуда взялась эта формула? Если бы отрезок АВ был параллелен оси Х, то его длина была бы равна Хв-Ха, точно так же, как в одномерной системе координат. А если он будет параллелен оси Y, то Yb-Ya. Но у нас отрезок координатным осям не параллелен. А теперь посмотрите на эту же иллюстрацию под несколько другим углом

Видите прямоугольный треугольник? Да, мы опять встретили старого знакомого. И наш отрезок это гипотенуза треугольника. Если вспомнить, что квадрат гипотенузы равен сумме квадратов катетов, то приведенная выше формула становится совершенно очевидной и понятной.

В декартовой системе координат можно задавать не только точки, но и произвольные плоские кривые (мы пока говорим о плоскости). Кривые задаются функциями определяющими зависимость между X и Y. Вот примеры нескольких, хорошо знакомых вам, еще со школы, кривых

Пока ничего особо интересного не было. До сих пор мы не выходили за пределы школьного учебника, но сейчас сделаем небольшой, совсем небольшой, шаг в сторону аналитической геометрии. Не пугайтесь, для понимания будет достаточно знаний геометрии и тригонометрии в рамках школьной программы.

Иногда нужно сменить систему координат, например, для упрощения расчетов. Так координаты вазы на столе можно отсчитывать от угла комнаты, а можно от угла стола. И тут у нас возникает вопрос, а как же изменятся координаты? Другими словами, нам нужны правила преобразования координат между двумя системами координат.

Сначала рассмотрим простейший пример переноса точки начала координат из точки О в точку О1. При этом у нас координатные оси новой системы координат будут параллельны координатным осям старой системы координат

Тут все просто, простейшая арифметика. Мы сдвинули точку начала координат O(0,0) в точку O1(dx,dy). При этом, в новой системе координат точка О1 будет иметь координаты (0,0). Преобразование координат между старой и новой системами будет таким

Но мы можем не только перенести начало координат, но и повернуть новую систему координат.

В этом случае преобразование координат будет сложнее. Я не буду приводить полный вывод формул преобразования координат, что бы излишне не усложнять статью, но покажу, откуда они берутся. Для этого рассмотрим упрощенный случай поворота системы координат без переноса ее начала

Поворот системы координат вокруг своего начала на угол α против часовой стрелки эквивалентен повороту точки А вокруг начала координат на тот же угол, но уже по часовой стрелке. Мы видим два прямоугольных треугольника. Если связать изменение абсциссы и ординаты точки А с углом поворота и добавить сдвиг начала координат, то получим вот такие формулы преобразования

Те, кто знаком с аналитической геометрией, без сомнения, узнали эти формулы. А остальные теперь узнали, откуда они взялись и могут просто применять их, если потребуется.

Давайте вернемся в рамки школьной программы. Кроме замены системы координат возможен и более простой случай преобразования координат. Я говорю об изменении масштаба по осям. По другому это можно назвать деформацией.

Масштаб по осям Х и Y может быть разным. При этом точка начала координат остается на месте. Я не буду приводить формулы преобразований, настолько они просты.

Все преобразование будет сводиться к умножению, или делению, на коэффициент масштабирования.

Безусловно, возможно и одновременное выполнение переноса центра координат с поворотом и масштабированием.

Двумерные системы координат. Общий случай

На самом деле, система координат не обязательно требует прямого угла между осями координат. Угол может быть любым. Если при этом оси координат остаются прямыми линиями мы получим аффинную систему координат. Пример аффинной системы можно найти в статье “Сага о треугольниках”, правда там я ее так не называл.

Но координатные оси не обязаны быть прямыми. Возможен, например, такой случай

Рассмотрение подобных систем координат выходит далеко за рамки статьи, поэтому я ограничусь лишь этим примером.

Трехмерная декартова система координат

А если мы перейдем в более привычный нам трехмерный мир? К системе координат добавится ось Z. Теперь у нас Х это ширина, Y это высота, а Z это глубина пространства. Если воспользоваться обычным языком, а не математическим. Координата Z называется аппликатой

При этом с направлением оси Z могут быть варианты. Она может идти от нас, как показано на рисунке, или к нам. Это не меняет саму суть системы, но влияет на знак координаты z. Иногда говорят о правосторонней и левосторонней системах координат. На рисунке я изобразил левостороннюю. Если бы ось Z шла к нам, то система была бы правосторонней.

Точки Ayoz, Axoz и Axoy, на рисунке, являются проекциями точки А на соответствующую координатную плоскость.

С трехмерной декартовой системой координат возможны те же самые преобразования, которые мы рассматривали для двумерной. Но сами формулы будут гораздо сложнее и я не буду их приводить. При желании, их можно найти в учебниках аналитической геометрии.

Полярная система координат

Вы когда-нибудь задумывались о том, насколько противоестественной для человека является декартова система координат? Действительно, эта система фактически “взгляд со стороны”, тогда как человек чаще всего чувствует центром именно себя. Вы же не считаете, что, например, дерево расположено от вас в 5 шагах точно направо и 8 шагах точно вперед? Гораздо привычнее сказать, что дерево впереди и немного правее вас и расстояние до него шагов 10.

Этого мало? Посмотрите, например, на свою руку. Она имеет несколько центров вращения – плечо, локоть. И длина костей руки неизменна. Посмотрите на промышленных роботов, например, работающих на сборке автомобиля. Та же самая картина, несколько центров вращения (называемых осями) и сегменты неизменной длины.

Так не проще ли задавать координаты в виде угла поворота относительно центра вращения и расстояния от центра вращения до точки? Пилоты самолетов примерно этим и пользуются. Например, другой самолет на 10 часах и в 100 метрах означает, что он впереди и левее на 60 градусов, а расстояние до него 100 метров.

В математике такая система координат называется полярной. Вместо расстояний по осям в ней задается расстояние от полюса, центра координат, и угол, отсчитываемый против часовой стрелки, от полярной оси.

В полярной системе координаты точки А будут (r,φ). Выглядит непривычно? Между тем, полярная система координат, хоть и менее распространена, чем декартова, среди не математиков, находит широкое применение.

При этом надо отметить, что угол φ обычно лежит в пределах от 0 до 180 градусов. Или, что тоже самое, от 0 до π.

Если угол больше 180 градусов, то меняют на угол противоположного знака (отсчет не против, а по часовой стрелке).

Уравнениях некоторых кривых в этой системе выглядят проще, чем в декартовой

Да, уравнение окружности, центр которой не расположен в полюсе, выглядит сложноватым. Зато уравнение окружности с центром в полюсе очень простое. А мы ведь всегда можем сменить систему координат перенеся полюс. Прямая линия в полярной системе задается через нормаль, а не двумя точками, но само уравнение достаточно простое.

Кроме механики, я уже говорил о движениях роботов, полярная система находит применение и для работы с комплексными числами. А значит, широко применяется, например, в электротехнике и электронике (помните угол сдвига фазы?). Может использоваться и для векторных вычислений.

Я не буду рассматривать преобразования (сдвиги и вращения) для полярной системы координат. Те, кто в таких преобразованиях нуждаются, аналитическую геометрию и так знают. А для остальных это будет не слишком интересно, Но покажу, как она связана с ранее описанной декартовой системой координат. Да, это опять будут прямоугольные треугольники

Теперь мы можем выразить угол через отношение катетов, то есть координат точки А. А длину вектора r определить через теорему Пифагора. Точно так же легко выполняется и обратное преобразование.

Но давайте посмотрим на эти формулы внимательнее, нет ли тут скрытых проблем? А они есть! Что если наша точка лежит на одной из координатных осей? Увидели? Я специально выделил это красным. Это показывает, что нельзя бездумно применять формулы. Поэтому угол φ обычно вычисляют по другим формулам

Источник: https://zen.yandex.ru/media/id/5b935f60343d6c00a9f52b06/etiud-o-koordinatah-5c9b13fabc05f82fd5572ce0

II. Свободные векторы. Три координаты свободного вектора

Три координаты

Макеты страниц

Возьмем три оси (рис. 1) и обозначим через алгебраические значения проекций вектора на эти оси, причем проектирование на какую-нибудь ось производится параллельно плоскости, проходящей через

две другие оси. Так как два геометрически равных вектора имеют, очевидно, одинаковые проекции и два вектора, имеющие одинаковые проекции, геометрически равны, то свободный вектор характеризуется тремя числами которые являются его координатами.

Два вектора с проекциями геометрически равны, когда

равны и противоположны, когда

параллельны, когда их проекции пропорциональны:

Случай прямоугольных осей. Направляющие косинусы вектора. Допустим, что оси координат являются прямоугольными, и обозначим через косинусы углов, которые образует с этими осями вектор имеющий модуль Проектируя вектор на эти оси, получим

и, кроме того,

Скалярное произведение двух векторов; угол между ними. Рассмотрим два вектора и Их скалярным произведением (согласно мемуару Грассмана, Геометрический анализ, 1846) называется число

получаемое умножением произведения модулей этих векторов на косинус угла между ними. В этом произведении первые два множителя положительны; третий множитель положителен, отрицателен или равен нулю в зависимости от того, будет ли угол между обоими векторами острым, тупым или прямым.

Предполагая снова оси прямоугольными, обозначим через проекции обоих векторов на эти оси, а через — их направляющие косинусы. Имеем

откуда, заменяла найденными из формул (2) значениями получим формулу

являющуюся аналитическим выражением скалярного произведения двух векторов и позволяющую определить косинус угла между ними.

Условие перпендикулярности двух векторов. Для того чтобы два вектора были взаимно перпендикулярны, необходимо и достаточно, чтобы косинус угла между ними равнялся нулю. Таким образом, в прямоугольных осях получаем условие

Скалярное произведение двух векторов мы будем обозначать символом

Другие названия и обозначения. Дж.-В. Гиббс (Vector Analysis, New York et Londres, 1902) употребляет для определения скалярного произведения название прямое произведение двух векторов; О. Хэвисайд (Electromagnetic Theory) — название скалярное произведение и М.

Карвалло — алгебраическое произведение. Были предложены и различные обозначения: наиболее простым обозначением скалярного произведения является запись в виде Имеем .

Проекция вектора на ось есть скалярное произведение этого вектора на вектор, численно равный и имеющий данную ось своей линией действия.

4. Геометрическая сумма произвольного числа свободных векторов

Пусть заданы векторы (рис. 3) .

Возьмем произвольную точку А за исходную и построим последовательно систему векторов, геометрически равных заданным векторам, а именно: сначала построим вектор равный в конце его — вектор равный затем вектор равный , наконец, вектор равный Вектор замыкает полученный таким образом многоугольник. Он называется геометрической суммой заданных векторов, а заданные векторы составляющими.

Рис. 3.

Легко убедиться, что геометрическая сумма не зависит от порядка, в котором берутся составляющие векторы.

Для обозначения того, что вектор является геометрической суммой векторов мы будем писать:

Проекции геометрической суммы векторов. Пусть — проекции векторов — проекции их геометрической суммы . Согласно теореме о проекциях, проекция вектора на произвольную

ось равна сумме проекций сторон многоугольника т. е. сумме проекций составляющих векторов. Таким образом, имеем

Равенство векторной суммы нулю. Если точка совпадает с точкой А, то сумма равна нулю. Для того чтобы это имело место, необходимо и достаточно, чтобы X, Y, Z равнялись нулю.

Примечание. Пусть Р — произвольный вектор. Если

то, взяв скалярные произведения, получим:

Это равенство непосредственно вытекает также из того, что проекция вектора на вектор Р равна сумме проекций векторов на вектор Р.

5. Геометрическая разность

Геометрическая разность векторов (рис. 4) есть вектор сумма которого с вектором равна вектору Проведем из некоторой точки А два вектора и геометрически равных заданным векторам Тогда вектор Геометрически равный вектору и будет искомым, так как

Мы будем писать

Рис. 4.

Проекции геометрической разности векторов. Пусть X, Y, Z — проекции геометрической разности двух векторов проекции которых равны соответственно Очевидно, имеем:

Рис. 5.

6. Положительное направление вращения вокруг оси

Пусть — некоторая ось, на которой произвольным образом выбрано положительное направление, например, от к (рис. 5).

Мы будем говорить, что точка М, движущаяся по произвольной пространственной кривой С, вращается вокруг оси в положительном направлении, если для наблюдателя, смотрящего по направлению от к точка движется справа налево. В противном случае точка вращается в отрицательном направлении.

Рассмотрим, например, два вектора (рис. 9). Допустим, что точка, перемещающаяся по направлению поворачивается вокруг вектора принятого в качестве оси, в каком-нибудь направлении. Тогда из рисунка видно, что и, наоборот, точка, перемещающаяся вдоль вращается вокруг в том же направлении.

Ориентация координатного триэдра. Мы будем предполагать, что координатный триэдр ориентирован таким образом, что поворот на 90° в положительном направлении вокруг оси переводит ось в ось (рис. 1).

Примечание. При другом выборе положительного направления для сохранения формул необходимо изменить ориентацию осей, придерживаясь указанного правила.

7. Векторное произведение двух векторов

Проведем из какой-нибудь точки А векторы и геометрически равные двум заданным свободным векторам и построим на них параллелограмм (рис. 6).

Проведем далее из точки А вектор перпендикулярный плоскости этого параллелограмма и содержащий столько единиц длины, сколько единиц площади содержится в параллелограмме.

Направление вектора выберем таким образом, чтобы точка, пробегающая контур вращалась вокруг в положительном направлении. Этот вектор или О называется векторным, или внешним произведением векторов что записывается следующим образом:

Рис. 6.

Грассман называет вектор О дополнением цикла определенного векторами

Векторное произведение на есть вектор или противоположный вектору О. Действительно, новое векторное произведение имеет ту же линию действия и тот же модуль, что и вектор О, но оно направлено в противоположную сторону, так как точка, описывающая контур должна вращаться вокруг в положительном направлении. Имеем:

и, следовательно,

Если совпадает с то векторное произведение обращается в нуль:

Источник: https://scask.ru/l_book_tm1.php?id=4

Прямоугольная система координат на плоскости и в пространстве, трехмерная система координат, координаты точек

Три координаты

При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.

Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.

Прямоугольная декартова система координат на плоскости

Чтобы ввести систему координат на плоскости, необходимо провести на плоскости две перпендикулярные прямые. Выбираем положительное направление, обозначая стрелочкой. Необходимо выбрать масштаб. Точку пересечения прямых назовем буквой O. Она считается началом отсчета. Это и называется прямоугольной системой координат на плоскости.

Прямые с началом O, имеющие направление и масштаб, называют координатной прямой или координатной осью.

Прямоугольная система координат обозначается Oxy. Координатными осями называют Ох и Оу, называемые соответственно ось абсцисс и ось ординат.

Изображение прямоугольной системы координат на плоскости.

Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление Ох слева направо, а Oy – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.

Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.

Прямоугольная система координат в трехмерном пространстве

Трехмерное евклидовое пространство имеет аналогичную систему, только оно состоит не из двух, а из трех Ох, Оу, Оz осей. Это три взаимно перпендикулярные прямые, где Оz имеет название ось аппликат.

По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.

Опиши задание

Оси координат пересекаются в точке O, называемой началом. Каждая ось имеет положительное направление, которое указывается при помощи стрелок на осях.

Если при повороте Ох против часовой стрелки на 90° ее положительное направление совпадает с положительным Оу, тогда это применимо для положительного направления Оz. Такую систему считают правой.

Иначе говоря, если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y, а средний за Z.

Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.

Координаты точки в декартовой системе координат на плоскости

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равняется единственной точке М, расположенной на данной прямой. Если точка расположена на координатной прямой на расстоянии 2 от начала отсчета по положительному направлению, то она равна 2 , если -3, то соответственное расстояние 3. Ноль – это начало отсчета координатных прямых.

Иначе говоря, каждая точка М, расположенная на Ox, равна действительному числу xM . Этим действительным числом и является ноль, если точка M расположена в начале координат, то есть на пересечении Ox и Оу. Число длины отрезка всегда положительно, если точка удалена в положительном направлении и наоборот.

Имеющееся число xM называют координатой точки М на заданной координатной прямой.

Возьмем точку как проекцию точки Mx на Ох, а как проекцию точки My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, где послучим соответственные точки пересечения  Mx и My .

Тогда точка Mx на оси Ох имеет соответствующее число xM , а My на Оу – yM. На координатных осях это выглядит так:

Каждая точка M на заданной плоскости в прямоугольной декартовой системе координат имеет одну соответствующую пару чисел (xM, yM), называемую ее координатами. Абсцисса M – это xM , ордината M – это yM .

Обратное утверждение также считается верным: каждая упорядоченная пара (xM, yM) имеет соответствующую заданную в плоскости точку.

Координаты точки в прямоугольной системе координат в трехмерном пространстве

Определение точки М в трехмерном пространстве. Пусть имеются Mx, My, Mz,  являющиеся проекциями точки М на соответствующие оси Ох, Оу, Оz. Тогда значения этих точек на осях Ох, Оу, Оz примут значения xM, yM, zM. Изобразим это на координатных прямых.

Чтобы получить проекции точки M, необходимо добавить перпендикулярные прямые Ох, Оу, Оz продолжить и изобразит в виде плоскостей, которые проходят через M. Таким образом, плоскости пересекутся в Mx, My, Mz

Каждая точка трехмерного пространства имеет свои данные (xM, yM, zM) , которые имеют название координаты точки M, , xM, yM, zM- это числа, называемые абсциссой, ординатой и аппликатой заданной точки M. Для данного суждения верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (xM, yM, zM) в заданной прямоугольной системе координат имеет одну соответствующую точку M трехмерного пространства.

Источник: https://Zaochnik.com/spravochnik/matematika/vektory/prjamougolnaja-sistema-koordinat-na-ploskosti-i-v/

Векторы в пространстве и метод координат

Три координаты

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего.

Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра.

Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Источник: https://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

Системы координат

Три координаты

  1. Декартова система координат.

    Начать изучение

  2. Деление отрезка в заданном отношении.

    Начать изучение

  3. Декартова прямоугольная система координат.

    Начать изучение

  4. Полярная система координат.

    Начать изучение

  5. Цилиндрические и сферические координаты.

    Начать изучение

Фиксируем в пространстве точку \(O\) и рассмотрим произвольную точку \(M\). Радиус-вектором точки \(M\) по отношению к точке \(O\) называется вектор \(\overrightarrow{OM}\). Если в пространстве кроме точки \(O\) выбран некоторый базис, то точке \(M\) сопоставляется упорядоченная тройка чисел — компоненты ее радиус-вектора.

Определение.

Декартовой системой координат в пространстве называется совокупность точки и базиса.

Точка носит название начала координат. Прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат; первая — осью абсцисс, вторая — осью ординат, третья — осью аппликат. Плоскости, проходящие через оси координат, называются координатными плоскостями.

Определение.

Пусть дана декартова система координат \(O\), \(\boldsymbol{e_{1}}\), \(\boldsymbol{e_{2}}\), \(\boldsymbol{e_{3}}\).

Компоненты \(x\), \(y\), \(z\) радиус-вектора \(\overrightarrow{OM}\) точки \(M\) называются координатами точки \(M\) в данной системе координат:$$\overrightarrow{OM} = x\boldsymbol{e_{1}} + y\boldsymbol{e_{2}} + z\boldsymbol{e_{3}}.

onumber$$

Первая координата называется абсциссой, вторая — ординатой, а третья — аппликатой.

Аналогично определяются координаты на плоскости и на прямой линии. Разумеется, точка на плоскости имеет только две координаты, а на прямой линии — одну.

Координаты точки пишут в скобках после буквы, обозначающей точку. Например, запись \(A(2,\ 1/2)\) означает, что точка \(A\) имеет координаты 2 и 1/2 в ранее выбранной декартовой системе координат на плоскости (рис. 2.1).

Рис. 2.

1

Координаты точки, как и компоненты вектора, — величины безразмерные. В частности, они не зависят от выбранной единицы измерения длин.

В самом деле, раскладывая векторы в теореме о линейной зависимости систем векторов, мы сводили дело к разложению вектора по коллинеарному с ним ненулевому вектору. А в этом случае компонента равна отношению длин, взятому с определенным знаком.

Легко видеть, что при заданной системе координат координаты точки определены однозначно. С другой стороны, если задана система координат, то для каждой упорядоченной тройки чисел найдется единственная точка, имеющая эти числа в качестве координат.

Система координат на плоскости определяет такое же соответствие между точками плоскости и парами чисел. Задание системы координат на прямой линии сопоставляет каждой точке вещественное число и каждому числу — точку.

Рис. 2.

2

Рассмотрим две точки \(A\) и \(B\), координаты которых относительно некоторой декартовой системы координат \(O\), \(\boldsymbol{e_{1}}\), \(\boldsymbol{e_{2}}\), \(\boldsymbol{e_{3}}\) соответственно \(x_{1}\), \(y_{1}\), \(z_{1}\) и \(x_{2}\), \(y_{2}\), \(z_{2}\). Поставим себе задачу найти компоненты вектора \(\overrightarrow{AB}\). Очевидно, что \(\overrightarrow{AB} = \overrightarrow{OB}-\overrightarrow{OA}\) (рис. 2.2). Компоненты радиус-векторов \(\overrightarrow{OA}\) и \(\overrightarrow{OB}\) равны (\(x_{1}\), \(y_{1}\), \(z_{1}\)) и (\(x_{2}\), \(y_{2}\), \(z_{2}\)) по определению координат. Из ранее доказанного предположения следует, что \(\overrightarrow{AB}\) имеет компоненты (\(x_{2}-x_{1}\), \(y_{2}-y_{1}\), \(z_{2}-z_{1}\)). Этим доказано следующее утверждение.

Утверждение 1.

Чтобы найти координаты вектора, нужно из координат его конца вычесть координаты его начала.

Деление отрезка в заданном отношении

Найдем координаты точки \(M\) на отрезке \(AB\), которая делит этот отрезок в отношении \(\lambda/\mu\), то есть удовлетворяет условию$$\frac{|AM|}{|MB|} = \frac{\lambda}{\mu},\ \lambda > 0,\ \mu > 0onumber$$(рис. 2.3). Это условие можно переписать в виде$$\mu\overrightarrow{AM} = \lambda\overrightarrow{MB}.\label{ref1}

$$

Рис. 2.

3

Обозначив через (\(x_{1}\), \(y_{1}\), \(z_{1}\)) и (\(x_{2}\), \(y_{2}\), \(z_{2}\)) соответственно координаты точек \(A\) и \(B\), а через (\(x\), \(y\), \(z\)) координаты точки \(M\), разложим обе части равенства по базису, причем компоненты векторов \(\overrightarrow{AM}\) и \(\overrightarrow{MB}\) найдем по предложению 1. Тогда$$\mu(x-x_{1}) = \lambda(x_{2}-x),\ \mu(y-y_{1}) = \lambda(y_{2}-y),\ \mu(z-z_{1}) = \lambda(z_{2}-z).

onumber$$Из этих равенств можно найти \(x\), \(y\) и \(z\), поскольку \(\lambda + \mu eq 0\):$$x = \frac{\mu x_{1} + \lambda x_{2}}{\lambda + \mu},\ y = \frac{\mu y_{1} + \lambda y_{2}}{\lambda + \mu},\ z = \frac{\mu z_{1} + \lambda z_{2}}{\lambda + \mu}\label{ref2}$$

Если в формулах \eqref{ref2} мы будем считать одно из чисел \(\lambda\) или \(\mu\) отрицательным, то из равенства \eqref{ref1} увидим, что \(M\) находится на той же прямой вне отрезка \(AB\), деля его в отношении |\(\lambda/\mu\)|. Поэтому из формул \eqref{ref2} можно найти координаты точки, делящей отрезок в заданном отношении как внутренним, так и внешним образом.

На плоскости и на прямой линии задача о делении отрезка решается точно так же, только из трех равенств в \eqref{ref2} остается соответственно два и одно равенство.

Декартова прямоугольная система координат

Общие декартовы системы координат используются реже, чем специальный класс таких систем — декартовы прямоугольные системы координат.

Определение.

Базис называется ортонормированным, если его векторы попарно ортогональны и по длине равны единице. Декартова система координат, базис которой ортонормирован, называется декартовой прямоугольной системой координат.

Нетрудно проверить, что координаты точки относительно декартовой прямоугольной системы координат в пространстве по абсолютной величине равны расстояниям от этой точки до соответствующих координатных плоскостей. Они имеют знак плюс или минус в зависимости от того, лежит точка по ту же или по другую сторону от плоскости, что и конец базисного вектора, перпендикулярного этой плоскости.

Аналогично находят координаты точки относительно декартовой прямоугольной системы координат на плоскости.

Цилиндрические и сферические координаты

В пространстве обобщением полярных систем координат являются цилиндрические и сферические системы координат.

И для тех, и для других фигура, относительно которой определяется положение точки, состоит из точки \(O\), луча \(l\), исходящего из \(O\), и вектора \(\boldsymbol{n}\), равного по длине 1 и перпендикулярного к \(l\).

Через точку \(O\) проведем плоскость \(\Theta\), перпендикулярную вектору \(\boldsymbol{n}\). Луч \(l\) лежит в этой плоскости.

Пусть дана точка \(M\). Опустим из нее перпендикуляр \(MM’\) на плоскость \(\Theta\).

Цилиндрические координаты точки \(M\) — это три числа \(r\), \(\varphi\), \(h\). Числа \(r\) и \(\varphi\) — полярные координаты точки \(M’\) по отношению к полюсу \(O\) и полярной оси \(l\), a \(h\) — компонента вектора \(\overrightarrow{M’M}\) по вектору \(\boldsymbol{n}\). Она определена, так как эти векторы коллинеарны (рис. 2.5).

Рис. 2.

5

Сферические координаты точки — три числа (\(r\), \(\varphi\), \(\theta\)). Они определяются так: \(r = |\overrightarrow{OM}|\). Как и для цилиндрических координат, \(\varphi\) — угол вектора \(\overrightarrow{OM_{1}}\) с лучом \(l\), а \(\theta\) — угол вектора \(\overrightarrow{OM}\) с плоскостью \(\Theta\) (рис. 2.6).

Рис. 2.

6

Источник: https://univerlib.com/analytic_geometry/vector_algebra/coordinate_systems/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.